

MDCN: Multi-Scale, Deep Inception **Convolutional Neural Networks for Efficient Object Detection**

¹University of Kansas, ²Ainstein Inc.

Motivation

Object detection in challenging situations such as scale variation, occlusion, and truncation depends not only on feature details but also on contextual information.

- · Previous: emphasize much on detail features by deeper and wider network
- · Problem: low effectiveness of feature usage with high load of computation as feature details are easily being changed or even "washed out" after passing through complicated filtering structures.
- MDCN: proposes multi-scale and deep inception convolutional neural network, focusing on wider and broader object regions by activating feature maps produced in deep part of the network.

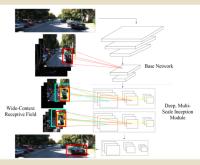


Fig.1 Multi-scale, wide-context receptive field activation

Contributions

- · Integrate the contextual information into the self-learning process through a single-shot network structure.
- Information square inception modules are proposed to detect objects with multi-size context expression while maintaining a high computation efficiency by parameter sharing.
- The proposed MDCN model achieves better performance with a relatively shallow network at a real-time speed.

Detection Pipeline

Feature extraction, wide-angle contextual information, object classification and bounding box regression are performed in a single-shot pipeline. 1. Base network: VGG-16

- extract high-resolution, low-dimensional features
- 2. Multi-scale deep inception module: extract object main-body and multi-scale contextual information

Wide-Context Receptive Field

- Guide the network to activate various contextual
- regions by a spontaneous learning process. more sensitive towards main-body features of
- objects
- pay more attention to relationships among objects and between objects and scenes Feature maps produced in deep layers cover larger
- proportion of the original scene
- Receptive fields are able to cover larger scope of scenes
- Various contextual information can be involved in actual learning course

$$\begin{split} \Phi_n &= f_n(\Phi_{n-1}) = f_n(f_{n-1}(\dots f_1(I))) \\ \Phi_m &= F_m(\Phi_{m-1}) \\ &= F_m(F_{m-1}(\dots F_{m-k}(\Phi_n))), m-k > n \end{split}$$

$$= f_i(\Phi_{j-1}; W_j), m-k \le j \le m$$

Information-Square Inception Modules

- Combination of 1x1, 3x3 and 5x5 filters:
- activating multi-scale receptive fields using two series of 3x3 filters to replace 5x5
- filter so as to minimize the number of parameters
- By defining weights to each filtering units, the information-square inception modules formed.
- $F_{i} = f_{i}(f_{i}(\Phi_{i-1})) + 2 \times f_{i}(\Phi_{i-1}) + \Phi_{i-1}, m-k \le j \le m$

$$\begin{aligned} f_{j}^{2}(\Phi_{j-1}) &= (f_{j}^{2} + 2 \times f_{j} + 1)(\Phi_{j-1}) \\ &= \left((f_{j} + 1)^{2} \right) (\Phi_{j-1}), m-k \le j \le m \end{aligned}$$

Data and Implementation

Dataset: KITTI

- containing many challenging objects like small and occluded cars, pedestrians and cyclists
- objects are labeled as easy, moderate, and hard based on how much objects are occluded and truncated

Implementation:

- All images are rescaled from 1242x375 to 300x300
- Intersection over Union (IoU) for car, pedestrian and cyclist are all set to 50%
- The VGG-16 base network is pretrained on ImageNet and MDCN is fine-tuned on KITTI

Detection Accuracy

object instance object vs. object

E COMPARISON RI	SULTS O	E DIFFEREN	T MODEL		BLE I MS OF AVER	AGE PRE	CISION(i) ON KITT	T VALID/	TION S
Model		Car	T MODEL		Pedestrian	NOL THE		Cyclist	1 1/1210/	mAP
Widder	Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard	mar
SSD	85.00	74.00	67.00	53.00	50.00	48.00	46.00	52.00	51.00	58
ResNet-101	87.57	76.04	68.07	50.27	47.74	45.21	49.86	53.61	51.77	58.9
WRN-16-4	90.08	76.8	68.5	52.29	47.88	45.3	47.71	50.36	49.38	58.7
WR-Inception	87.1	77.2	68.81	55.98	52.51	48.61	52.9	54.63	52.87	61.18
WR-Inception-12	90.36	78.24	71.11	53.26	51.08	49.54	57.02	59.28	57.39	63.03
MDCN-I1	88.40	87.96	87.34	56.39	50.37	48.86	71.58	72.21	76.82	71.9
MDCN-I2	88.70	88.19	87.91	55.02	50.21	48.28	73.85	72.66	74.95	72.30

object vs. scene

				A CAR
				A CONTRACTOR OF A CONTRACTOR
E III OF DIFFERI	ENT MODELS			
tesolution	# of Params	FPS		
300×300 300×300	2.41×10^{7} 2.54×10^{7}	17.0	Car. 0.97	
300×300 300×300	2.54× 10 ⁻ 2.55× 10 ⁷	15.8	1	and a
			15	10
			Ervis, a st	

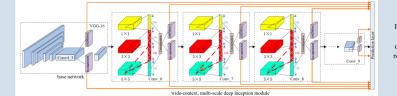


Fig.2 The architecture of MDCN. The widecontext, multi-scale deep inception module consists of multiple filtering structures. The red, yellow and green boxes each indicate one filter size.

	TABL	ΕII	
RESULTS ON KITTI	VALIDATION SET	FOR DIFFERENT	IOU THRESHOLDS

Classes	Methods	0.5	0.55	0.6	0.65	0.7	0.75	0.8	
Car	SSD	83.9	80.9	77.6	74.5	67.7	59.4	49.7	
	MDCN-II	88.1	87.4	84.3	79.0	75.9	69.3	59.6	
	MDCN-I2	88.4	87.6	85.2	79.1	75.9	69.0	59.7	
Pedestrian	SSD	47.3	41.2	32.7	27.3	20.8	15.9	12.4	
	MDCN-II	54.8	48.4	41.1	32.2	24.5	18.8	11.8	
	MDCN-12	54.0	47.4	42.1	35.5	26.3	15.9	9.7	
Cyclist	SSD	61.5	52.0	48.7	41.0	30.2	21.7	11.0	
	MDCN-II	72.8	62.6	56.9	51.0	41.0	28.5	18.1	
	MDCN-I2	75.0	68.9	64.3	52.6	40.1	28.7	21.8	

	DETECTION		BLE III	ENT MODELS
Model	Network	GPU	Resolution	# of Params
SSD	VGG-16	K40	300×300	2.41×10^{7}
MDCN-II	VGG-16	K40	300×300	2.54×10^{7}
MDCN-I2	VGG-16	K40	300×300	2.55× 107