MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection

Wenchi Ma1; Yuanwei Wu1; Zongbo Wang2; Guanghui Wang1
1University of Kansas, 2Ainstein Inc.

Motivation
Object detection in challenging situations such as scale variation, occlusion, and truncation depends not only on feature details but also on contextual information.

- Previous: emphasize much on detail features by deeper and wider network
- Problem: low effectiveness of feature usage with high load of computation as feature details are easily being changed or even “washed out” after passing through complicated filtering structures.
- MDCN: proposes multi-scale and deep inception convolutional neural network, focusing on wider and broader object regions by activating feature maps produced in deep part of the network.

Detection Pipeline
Feature extraction, wide-angle contextual information, object classification and bounding box regression are performed in a single-shot pipeline.

1. Base network: VGG-16
 - extract high-resolution, low-dimensional features
2. Multi-scale deep inception module:
 - extract object main-body and multi-scale contextual information.

Information-Square Inception Modules
- Combination of 1x1, 3x3 and 5x5 filters: activating multi-scale receptive fields
- using two series of 3x3 filters to replace 5x5 filter so as to minimize the number of parameters

By defining weights to each filtering units, the information-square inception modules formed.

\[F = f_j(f_1(\Phi_j)) + 2 \times f_2(\Phi_j) + \Phi_{j+1}, m \leq k \leq m \]

\[F_j(\Phi_j) = (f_j + 1)(\Phi_j), m \leq k \leq m \]

Data and Implementation
Dataset: KITTI
- containing many challenging objects like small and occluded cars, pedestrians and cyclists
- objects are labeled as easy, moderate, and hard based on how much objects are occluded and truncated
- All images are rescaled from 1242x375 to 300x300
- Intersection over Union (IoU) for car, pedestrian and cyclist are all set to 50%
- The VGG-16 base network is pretrained on ImageNet and MDCN is fine-tuned on KITTI

Detection Accuracy

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Model} & \textbf{Car} & \textbf{Pedestrian} & \textbf{Car} & \textbf{Pedestrian} & \textbf{Car} & \textbf{Pedestrian} & \textbf{Car} & \textbf{Pedestrian} & \textbf{IoU} & \textbf{mAP} \\
\hline
\hline
\textbf{RoVA} & 87.37 & 75.00 & 88.00 & 75.00 & 87.9 & 75.00 & 87.9 & 75.00 & 75.00 & 75.00 \\
\textbf{VGG-16} & 86.00 & 75.00 & 87.9 & 75.00 & 87.9 & 75.00 & 87.9 & 75.00 & 75.00 & 75.00 \\
\textbf{Kinetik} & 65.00 & 65.00 & 65.00 & 65.00 & 65.00 & 65.00 & 65.00 & 65.00 & 65.00 & 65.00 \\
\textbf{MS Inception} & 50.00 & 50.00 & 50.00 & 50.00 & 50.00 & 50.00 & 50.00 & 50.00 & 50.00 & 50.00 \\
\textbf{MDCN} & 86.76 & 86.76 & 86.76 & 86.76 & 86.76 & 86.76 & 86.76 & 86.76 & 86.76 & 86.76 \\
\hline
\end{tabular}
\end{table}

Fig. 1. Multi-scale, wide-context receptive field activation

Fig. 2. The architecture of MDCN. The wide-context, multi-scale deep inception module consists of multiple filtering structures. The red, yellow and green boxes each indicate one filter size.

TABLE II

<table>
<thead>
<tr>
<th>Class</th>
<th>Model</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>VGG-16</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>VGG-16</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>Cyclist</td>
<td>VGG-16</td>
<td>600</td>
<td>400</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Model</th>
<th>Network</th>
<th>LPC</th>
<th>Resolution</th>
<th>F of Average</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCN1 & VGG-16</td>
<td>4.0 & 500x500</td>
<td>2.0 & 300 & 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDCN2 & VGG-16</td>
<td>4.0 & 500x500</td>
<td>2.0 & 300 & 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDCN3 & VGG-16</td>
<td>4.0 & 500x500</td>
<td>2.0 & 300 & 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>